ANALISIS PENGARUH FRAUD TRIANGLE DALAM MENDETEKSI KECURANGAN LAPORAN KEUANGAN



Mardianto Mardianto(1*), Carissa Tiono(2)

(1) Universitas Internasional Batam
(2) Universitas Internasional Batam
(*) Corresponding Author

Abstract


This study analyzed the effect of the elements from fraud triangle, which included pressure (LEV, ROA, ACHANGE), opportunity (BDOUT), and rationalization (AUDCHANGE) in detecting fraudulent financial statement. Control variables that will be included in this study are firm’s age, firm’s size, liquidity risk, and managerial ownership. The sample that will be used in this study is non-financial companies that are listed in Indonesia Stock Exchange in the periode of 2011-2016. From the result, this study showed that change of assets (ACHANGE) and change of auditors (AUDCHANGE) has a significant positive relationship with the fraudulent financial statement, while the other variables such as leverage (LEV), return on asset (ROA) and ineffective monitoring (BDOUT) has no significant in the relationship with the fraudulent financial statement.

Penelitian ini meneliti pengaruh dari elemen fraud triangle, yaitu tekanan (LEV, ROA, ACHANGE), kesempatan (BDOUT), dan rasionalisasi (AUDCHANGE) dalam mendeteksi kecurangan laporan keuangan. Variabel kontrol yang digunakan dalam penelitian ini adalah umur perusahaan, ukuran perusahaan, liquidity risk, dan kepemilikan manajerial. Sampel yang digunakan dalam penelitian adalah perusahaan non-keuangan yang terdaftar pada Bursa Efek Indonesia (BEI) selama periode 2011-2016. Dari hasil penelitian tersebut ditemukan variabel perubahan aset (ACHANGE) dan pergantian auditor (AUDCHANGE) memiliki pengaruh signifikan positif terhadap kecurangan laporan keuangan, sedangkan variabel lainnya yaitu leverage (LEV), return on asset (ROA) dan ineffective monitoring (BDOUT) memiliki pengaruh yang tidak signifikan terhadap kecurangan laporan keuangan


Keywords


change of asset; change of auditors; fraud triangle; fraudulent financial statement; leverage; opportunity; pressure; rationalization; ratio of independent commissioner; return on asset

Full Text:

PDF INDONESIA

References


Abbas, A. (2017). Earnings Fraud and Financial Stability, 2(1), 117–134. https://doi.org/10.21532/apfj.001.17.02.01.010

Abdullahi, R. ’u, & Mansor, N. (2015). Fraud Triangle Theory and Fraud Diamond Theory. Understanding the Convergent and Divergent For Future Research. International Journal of Academic Research in Accounting Finance and Management Sciences, 5(4), 38–45. https://doi.org/10.6007/IJARAFMS/v5-3/1823

Aghghaleh, S. F., Iskandar, T. M., & Mohamed, Z. M. (2014). Fraud Risk Factors of Fraud Triangle and the Likelihood of Fraud Occurrence : Evidence from Malaysia. Information Management and Business Review, 6(1), 1–7. https://doi.org/http://dx.doi.org/10.1108/17506200710779521

Albrecht, W. S., Albrecht, C. O., Albrecht, C. C., & Zimbelman, M. F. (2011). Fraud Examination (4th ed.). Mason, Ohio USA: Cengage Learning.

Amara, I., Ben Amar, A., & Jarboui, A. (2013). Functions and Reliability of International Financial Reporting Systems of Rural Smes in Kwazulu Natal: Knowledge and Understanding of Financial Management. International Journal of Academic Research in Accounting Finance and Management Sciences, 3(3), 125–132. https://doi.org/10.6007/IJARAFMS/v3-i

Aprillia, Cicilia, O., & Sergius, R. P. (2015). The Effectiveness of Fraud Triangle on Detecting Fraudulent Financial Statement: Using Beneish Model and the Case of Special Companies. Jurnal Riset Akuntansi Dan Keuangan Program Studi Akuntansi Fakultas Pendidikan Ekonomi Dan Bisnis Universitas Pendidikan Indonesia, 3(3), 786–800. https://doi.org/http://dx.doi.org/10.17509/jrak.v3i3.6621

Ardiyani, S., & Sri Utaminingsih, N. (2015). Analisis Determinan Financial Statement Melalui Pendekatan Fraud Triangle, 4(1), 1–10.

Boumediene, S. L. (2014). Detection and prediction of managerial fraud in the financial statements of tunisian banks, 6(2), 1–10.

Dalnial, H., Kamaluddin, A., Sanusi, Z. M., & Khairuddin, K. S. (2014). Accountability in Financial Reporting: Detecting Fraudulent Firms. Procedia - Social and Behavioral Sciences, 145, 61–69. https://doi.org/10.1016/j.sbspro.2014.06.011

Darmawan, A., & Oktoria, S. (2017). The Impact of Auditor Quality , Financial Stability , and Financial Target for Fraudulent Financial Statement, 2(1), 9–14.

Ghozali, I. (2013). Aplikasi Analisis Multivariate Dengan Program IBM SPSS 21 Update PLS Regresi. Semarang: Badan Penerbit Universitas Diponegoro.

Gisairo, B. G. (2016). Effectiveness of Use of Biometric Technology to Curb Fraud in Medical Insurance Firms in Kenya.

Gupta, R., & Gill, N. S. (2012). A Solution for Preventing Fraudulent Financial Reporting using Descriptive Data Mining Techniques. International Journal of Computer Applications, 58(1), 22–28.

Hasnan et.al. (2014). Determinants of fraudulent financial reporting: Evidence from Malaysia. Jurnal Pengurusan, 42(2014), 103–117.

Heikal, M., Khaddafi, M., & Ummah, A. (2014). Influence Analysis of Return on Assets (ROA), Return on Equity (ROE), Net Profit Margin (NPM), Debt To Equity Ratio (DER), and current ratio (CR), Against Corporate Profit Growth In Automotive In Indonesia Stock Exchange. International Journal of Academic Research in Business and Social Sciences, 4(12), 101–114. https://doi.org/10.6007/IJARBSS/v4-i12/1331

Hubens, R. (2012). The Influence of the Financial Crisis on Auditor Changes and Earnings Management.

Indriantoro, N., & Supomo, B. (2011). Metodologi Penelitian Bisnis. Yogyakarta: BDFE.

Kasmir. (2013). Analisis Laporan Keuangan. Jakarta: PT Raja Grafindo Persada.

Komite Nasional Kebijakan Governance. (2006). Pedoman Umum Good Corporate Governance Indonesia. Pedoman Umum Good Corporate Governance Indonesia, 30. Retrieved from www.governance-indonesia.or.id

Lou, Y., & Wang, M. (2009). Fraud Risk Factor Of The Fraud Triangle Assessing The Likelihood Of Fraudulent Financial Reporting. Journal of Business & Economics Research, 7(2), 61–78. https://doi.org/10.19030/jber.v7i2.2262

Manurung, D. T. H., & Hadian, N. (2013). Detection Fraud of Financial Statement with Fraud Triangle. Proceedings of 23rd International Business Research Conference, (November 2013), 978–1. https://doi.org/10.13140/RG.2.1.1736.6806

Manurung, D. T. H., & Hardika, A. L. (2015). Analysis of factors that influence financial statement fraud in the perspective fraud diamond: Empirical study on banking companies listed on the Indonesia Stock Exchange year 2012 to 2014. International Conference on Accounting Studies (ICAS), (August). Retrieved from www.icas.my

Mehta, A., & Bhavani, G. (2015). Journal of Forensic and Investigative Accounting Volume 9 : Issue 1 , January – June , 2017 Journal of Forensic and Investigative Accounting, 9(1), 692–710.

Mohamed, N., & Handley-Schachler, M. (2015). Roots of Responsibilities to Financial Statement Fraud Control. Procedia Economics and Finance, 28(April), 46–52. https://doi.org/10.1016/S2212-5671(15)01080-1

Prasmaulida, S. (2016). Financial Statement Fraud Detection Using Perspective of Fraud Triangle Adopted By Sas No. 99. Asia Pacific Fraud Journal, 1(2), 317. https://doi.org/10.21532/apfj.001.16.01.02.24

Putra, F. (2015). Peran dan Tanggung Jawab Komisaris Independen Ditinjau dari Undang-Undang Perseroan Terbatas, 1(1).

Ramírez-Orellana, A., Martínez-Romero, M. J., & Mariño-Garrido, T. (2017). Measuring fraud and earnings management by a case of study: Evidence from an international family business. European Journal of Family Business. https://doi.org/10.1016/j.ejfb.2017.10.001

Repousis, S. (2016). Using Beneish model to detect corporate financial statement fraud in Greece. Journal of Financial Crime, 23(4), 1063–1073. https://doi.org/10.1108/JFC-11-2014-0055

Susanto, Y. K., & Pradipta, A. (2016). Corporate governance and real earnings management. International Journal of Business, Economics and Law, 9(1).

Suyanto. (2009). Evidence from Statement on Auditing Standard No . 99. Gadjah Mada International Journal of Business, 11(1), 117–144.

Tarjo, & Herawati, N. (2015). Application of Beneish M-Score Models and Data Mining to Detect Financial Fraud.

Warshavsky, M. (2012). Earnings Quality. Financial Valuation and Litigation Expert, (39), 16–20.

Zainudin, E. F., & Hashim, H. A. (2016). Detecting fraudulent financial reporting using financial ratio. Journal of Financial Reporting and Accounting, 14(2), 266–278. https://doi.org/10.1108/JFRA-05-2015-0053

Zaki, N. M. (2017). The Appropriateness of Fraud Triangle and Diamond Models in Assesing The Likelihood of Fraudulent Financial Statements- An Empirical Study on Firms Listed in The Egyptian Stock Exchange. International Journal of Social Science and Economic Research ISSN:, 2(2), 2403–2433.


Refbacks

  • There are currently no refbacks.


Copyright (c) 2019 Mardianto, Carissa Tiono

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Published by LLDIKTI Wilayah X

Khatib Sulaiman Street Padang
West Sumatera, Indonesia
Phone: +62751705637
Fax: +62751705637
Email: [email protected]

E ISSN 2477-7862